*** Please note, each row and course# listed below is a separate, complete course. ***
Science and Technology of Fluoropolymers
Course# | Date | Time | Location | |
---|---|---|---|---|
Coming Soon |
Online Registration
CEU's: 0.8
Instructor: Mr. Jiri Drobny
Course Overview
Fluoropolymers are defined as a family of thermoplastic resins and elastomers in which some or all of the hydrogen atoms attached to the carbon chain are replaced by fluorine or fluorinated alkyl groups. In some cases, other halogens such as chlorine are also part of the molecule.
The chemistry of the majority of fluoropolymers is derived from compounds used in the refrigeration industry. The most common monomers used for the preparation of the known fluoropolymers are shown below. These can be combined to yield typically homopolymer, copolymers and terpolymers. The resulting products are thermoplastic resins or elastomers with unique properties not readily achievable by other polymeric materials such as chemical inertness, resistance to elevated temperatures, resistance to ultraviolet radiation, excellent weather resistance, excellent dielectric properties, flame resistance, hydrophobicity, and low coefficients of friction.
In general, some material properties are strictly depending on the chemical substance under investigation; others depend on the processing operation, which determines the shape, dimensions and orientation within the material. Therefore the properties of individual polymers are essentially distinguished as physical, mechanical, thermal, and electrical. There are some other attributes that are important for specific polymers or classes of polymers, which may be optical properties, chemical properties, response to radiation, barrier properties, solubility, and thermal stability.
Compound |
Formula |
Ethylene (E) |
H2C = CH2 |
Tetrafluoroetylene (TFE |
F2C = CF2 |
Chlorotrifluoroethylene (CTFE) |
F2C = CFCl |
Vinylidene fluoride (VDF or VF2) |
H2C = CF2 |
Vinyl fluoride (VF) |
H2C = CHF |
Propene (propylene) (P) |
H2C = CH – CH3 |
Hexafluoropropylene (HFP) |
F2C = CF – CF3 |
Perfluoromethylvinyl ether (PMVE) |
F2C = CF – O – CF3 |
Perfluoropropylvinyl ether (PPVE) |
F2C = CF – O – C3F7 |
Online Course Requirements
We want you to have a great experience participating in our remote (online) courses, and for that, you’ll need the right equipment and internet connection.
Minimum needs are:
- A broadband internet connection that has at least a 2 Mbps upload and download speed.
- A computer (PC or Mac) that can support the latest web browser versions.
- At least 4 GB of RAM and adequate hard drive space.
- A microphone and a speaker.
- International Students: For virtual (online) courses, an additional fee will be assessed to cover the cost of shipping the professional binder (presentation slides), to your address. The cost of international shipping can be significant.
For more information, visit our Online Course Requirements webpage.
Instructor Biography:
Mr. Drobny is the President of Drobny Polymer Associates, an international consulting service. He was educated at the Prague Technical University in Chemical Engineering (processing of rubber and plastics), University of Akron in Polymer Science (physics and engineering of polymers), and Shippensburg State University in Business Administration (management and finance). He has more than 50 years of industrial experience in senior and executive responsibilities, with particular interest in fluoropolymer science and technology, thermoplastic elastomers, radiation technology, adhesives and coatings and rubber technology. He served as adjunct faculty in the Plastics Engineering at the University of Massachusetts, Lowell and presented lectures at national and international conferences. Mr. Drobny is the author of several books and chapters and coauthor of several US and European patents.
- Introduction
- Basic Chemistry (monomers, polymerization)
- Fluoroplastics (PTFE, PFA/MFA, FEP, PCTFE, ETFE, ECTFE, PVDF, PVF, THV Fluoroplastics, Others), Properties
- Fluoroelastomers (FKM, FFKM, Fluorosilicones), Properties
- Other Fluoropolymers, Properties
- Commercial Fluoroplastics (manufacture, processing, applications)
- Commercial Fluoroelastomers (manufacture, processing, applications)
- Aqueous Polymeric Systems (processing, applications)
- Safety, Hygiene, Recycling, Disposal of Fluoropolymers
- Recent Developments and Trends