

CORROSION ENGINEERING AT NCERCAMP

The National Center for Education and Research on Corrosion and Materials Performance

NCERCAMP AT THE UNIVERSITY OF AKRON

Corrosion and materials degradation costs the United States \$276 billion annually, according to "Corrosion Costs and Preventive Strategies in the United States," a study released by NACE International and the U.S. Federal Highway Administration. With those costs continually rising, UA recognizes a need for skilled corrosion engineers and is the first university in the nation to offer a baccalaureate degree in corrosion engineering.

Capitalizing on this unique degree program, the U.S. Department of Defense awarded the University a grant to create the National Center for Education and Research on Corrosion and Materials Performance (NCERCAMP). NCERCAMP provides corrosion engineering research, testing and analysis to provide corrosion and materials performance solutions to industry and government agencies.

The center's more than 30 interdisciplinary professors and technicians are experts in a wide variety of engineering disciplines, including corrosion, chemical, surface, mechanical, civil, electrical and structural engineering, as well as polymer science, applied mathematics and statistics. This unique collection of skillsets allows the center to provide innovative solutions to a wide range of corrosion and materials performance issues.

For information on how to work with NCERCAMP on a project, please contact us at:

Address:	NCERCAMP		
	264 Wolf Ledges Parkway	Email:	ncercamp1@uakron.edu
	Akron, OH 44325		
		Website:	uakron.edu/ncercamp
Telephone:	330-972-6978		
Fax:	330-972-5141		

CONTENTS

- Backgrour
- Contents
- Equipmen
- Faculty an
- Capabilitie
- Materials
- Materials
- Materials
- Modeling
- Microbially
- Methods

d and Contact Information1
2
t Listing
d Key Stakeholders6
es
Performance Testing 10
Characterization
Development
& Simulation
/ Influenced Corrosion (MIC) 14
of Collaboration

EQUIPMENT LIST

Equipment	Description	Equipment	Description
- Tescan LYRA-3 XMU FIB- FESEM System - Sputter Coater with Metal Vacuum Chamber	Microscopy observations, analytical compositional analysis	 CORTEST frame for mechanical tests 1 Gal Autoclave (Hastelloy) 150,000 PSI Proof ring test system (mechanical testing) 	Hostile environments, mechanical testing under high temperature/high pressure environments
- Atomic Force Microscope with Multimode/Nanoscope	Materials Characterization, surface analysis (nano-scale) coupled	- Slow strain rate tests for mechanical testing (2)	
	with electrochemical measurements	- MTS Criterion C45.105 - MTS Landmark 370.10 with immersion bath chamber	Mechanical testing, materials are exposed to heavy loads or cyclic loads,
- Micro hardness tester - Microscope for Coating Examination	Coatings sample preparation, coatings application and		mechanical performance of
 Film Formation Bar Stereoscopic Microscope – Olympus SZX16 Inverted Microscope AmScope Ultrasound Gauge, holiday detector, coating thickness gauge 	microscopy observations of coated materials, sample preparation for coatings performance tests	 High temperature vacuum furnace High temperature 6 in. tube furnace Furnace 1600C box furnace Grinding bowl and tungsten ball mill MTS Electromechanical 	Composite materials, high temperature applications, materials performance at high temperatures
- Alicona InFocus G5 surface characterization - SEM Hitachi TM3030+ with	Surface Characterization, microscopy observations with compositional analysis	mechanical test system - Micro-hardness tester	
EDS - Rotating Cylinder Electrode (15-mm OD) - Gamry Potentiostats (4)	Wet chemistry, electrochemical characterization of	- CORTEST high purity autoclave	Autoclave, high temperature pressure tester
 Biologic Potentiostats SP200 (2) Biologic Potentiostat VSP300 4-channel materials by means of electrochemical techniques 	- Simultaneous TGA/DSC/DTA System	TGA, materials degradation, high temperature exposure	
 Modulab Solartron XM Electrochemical System Salt spray chambers 	Environment exposure,	- Dell Precision Computers with specialized materials software: PANDAT, ELSYCA, OLI (6)	Modeling and simulation
	accelerated corrosion tests by aggressive environments	- Struers Tegramin 30 polishing machines (2) - Buehler Abrasimatic 300 cutter	Sample preparation, sample cutting and grinding for
- Kelvin Probe with environmental chamber - Electrochemical Scanning	Electrochemical microscopy, surface analysis coupled with	- UV VIS Spectrophotometer	electrochemical tests Materials development
System VersaScan (SECM, SVET, LEIS, SKP, SDC)	electrochemical testing	- Force Tensiometer - Gamry 8-channel potentiostat	
- QUV Accelerated weathering tester	Temperature-relative humidity, coatings	- High energy ball mill	Materials development
- QCT condensation tester	degradation tests by UV light and droplets condensation	- Fluorescence Microscope Olympus BX63 motorized XY stage	Materials development
- CSZ Temperature/Humidity tests	Sensors, controlled atmosphere tests	- Automatic hydraulic press - Tube furnace with controlled atmosphere	Materials development
- Grips for Instron mechanical testing	Sensors, controlled atmosphere tests	- Modeling software COMSOL	Modeling and simulation

EQUIPMENT LIST

Equipment	Description
- X-Ray computed tomography GE with dual tube	
- Temperature-relative humidity cabinet - Freeze thaw chamber	Controlled environment chambers
- Dedicated Acoustic Emission and resistance monitoring for burner rig	
- Gamry 600 potentiostats (4)	CAREs, electrochemical tests
- Hysitron Nano Mechanical test system	
- Scanning Auger Nanoprobe PH1710	
- PVD Deposition Chamber- Angstrom	

Postdoctoral researcher performs electrochemical testing.

Equipment	Description
- X-Ray Diffractometer-thin film	
 Oven for powder coatings Mini temperature film formation bar Climate chamber Film drying Chamber-Keyence Thinky centrifugal mixer Viscosity Rheometer CM-5 colorimeter Dispermat CV3 E-coater FTIR Spectrometer Hot air generator Low temperature freezer UV processor Omnicure S2000 Convection oven BlueM UV wet powder coatings processor with oven for UV- curable powder coatings Sample cutter JDC Precision Gardco Scrub resistance D10- VF Film drying chamber machining and building Modern Tool Co. Ross high sheer inline mixer Film drying chamber humidity control system VWR refrigerator/freezer 	Coatings application and performance, materials development and performance
 Extensometer for MTS Burner Rig HVOC for burner rig Horizontal high temperature test instrument DIC with thermal imaging for horizontal MTS PPS thermal spray room High temperature tests, materials performance 	High temperature test, materials performance
GAMRY 600 potentiostat with EQCM	Electrochemical tests
GAMRY 600 potentiostat	Electrochemical tests
Modeling software Biovia	Modeling and simulation

FACULTY AND KEY STAKEHOLDERS

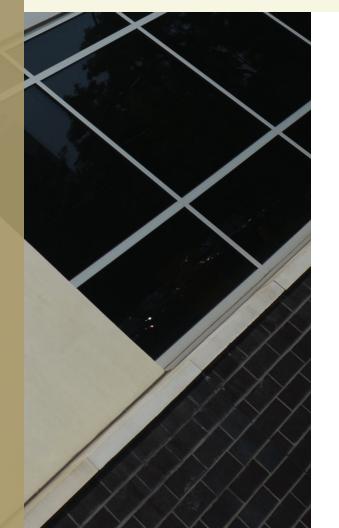
Bastidas, David M.	Corrosion Engineering	 Corrosion of Steel in Concrete Smart Corrosion Inhibitors Stainless Steel Corrosion
Cheng, Gang	Chemical Engineering	- Biomolecular Engineering - Antimicrobial Hydrogels - Antifouling Hydrogels
Clemons, Curtis	Applied Mathematics	 Computational Mathematical Models of Corrosion Damage Galvanic Corrosion, Crevice Corrosion Biofilms
Cong, Hongbo	Corrosion Engineering	- Corrosion - Pitting - Passivity
Dhinojwala, Ali	Dean of College of Polymer Science and Polymer Engineering	 Surface Characterization Plasma Coatings Adhesion
Doll, Gary	Surface Engineering	- Surface Engineering of Materials - Tribology - Nanocomposite Materials
Evans, Ed	Chemical Engineering	 Curriculum Development Environmental Barrier Coatings Nanomaterials
Foster, Mark D.	Polymer Science	 Microstructure and Dynamics of Polymer Systems Thin Films and Near Interfaces Novel X-Ray and Neutron Scattering Techniques
Gao, Xiaosheng	Mechanical Engineering	 Mechanics of Materials and Structures Fatigue and Fracture Mechanics Multi-scale Modeling of Damage
Golovatv, Dmitry	Mathematics	 Mathematical Modeling of Corrosion Damage Galvanic Corrosion Crevice Corrosion, Biofilms
Gupta, Rajeev Kumar	Corrosion Engineering	 Novel Metallic and Ceramic Coatings Passivity High-Temperature Corrosion
Hernandez-Maya, Roberto	Research Scholar	- Electrochemistry - Corrosion - Surface Characterization
Huang, Qindan	Civil Engineering	 Risk Analysis, Structural Reliability Performance Assessment of Deterioration Structures Damage Detection Methods
Ida, Nathan	Electrical & Computer Engineering	- NDE and Sensors - AC Corrosion - Antennas

FACULTY AND KEY STAKEHOLDERS

	Ju, Lu-Kwang	Chemical Engineering	
N A	Kreider, Kevin	Mathematics	
	Lillard, Scott	Corrosion Engineering	
	Menzemer, Craig	Structural Engineering	
	Miller, Chris	Civil Engineering	
	Mimoto, Nao	Statistics	
	Monty, Chelsea	Chemical Engineering	
	Morscher, Greg	Mechanical Engineering	
	Newby, Bi-min Zhange	Chemical Engineering	
	Patnaik, Anil	Structural Engineering	

Students perform testing on coatings.

 Microbiology Biofilms and MIC Fast Characterization of Pitting Corrosion
 Mathematical Modeling of Corrosion Damage Galvanic Corrosion Crevice Corrosion, Biofilms
 Localized Corrosion Passivity Stress Corrosion Cracking and Hydrogen Damage
 Fatigue and Fracture of Structural Systems Structural Behavior and Design Material Characterization and Full-Scale Experimentation
 Water Quality Modeling and Management Chemical Oxidation Process Hydraulic Modeling
- Statistics - Mathematics - Modeling Corrosion Damage
 Advanced Electrochemical for Corrosion Prevention and Mitigation Monitoring MIC
 High-Temperature Oxidation and Corrosion Stress, Time, Temperature, Environment Interaction and Mechanisms High-Temperature Ceramic Matrix Composite Systems
- Surface Modification/Patterning - Polymeric Materials - Anifouling Biofilms, MIC
 Corrosion Damage to Reinforced Concrete and Steel Structures Life Cycle Analysis and Condition Assessment Structural Engineering and Bridge Design and Construction


FACULTY AND KEY STAKEHOLDERS

Ramsier, Rex	Exec. Vice President, Principle Investigator	- Leadership - Surface Interactions (Metals) - Surface Science	
Sastry, Shiva	Electrical Engineering	 Systems Analysis and Engineering Wireless Monitoring Systems Large-Scale Real-Time Systems 	
Senko, John	Geosciences	MicrobiologyMicrobially Influenced Corrosion	
Shiller, Paul	Surface Engineering	 Surface Engineering of Materials Tribology Nanocomposite Materials, Lubrication Strategies 	
Soucek, Mark	Polymer Science	- Corrosion-Resistant Coatings - Metal Cladding - Coatings Under Insulation	
Srivatsa, Tirumalai	Mechanical Engineering	 Mechanical Behavior of Materials Materials Processing and Characterization Influence on Structural Response 	
Young, Gerald	Applied Mathematics	 Computational Mathematical Models of Corrosion Damage Galvanic Corrosion, Crevice Corrosion Biofilms 	
Zhe, Jiang "John"	Mechanical Engineering	 MEMS/NEMS and Lab-on-a-Chip Devices, Smart Materials and Structures Micro/Nano Actuators, Microfluidics and Nanofluidics Online Health Monitoring of Rotating Machinery 	
Zhou, Qixin "Amelia"	Corrosion Engineering	 Coatings Performance and Degradation Processes, Self-Healing Coatings Water Treatment and Biodegradation Electromagnetic Compatibility 	
Imes, Will	Senior Engineering Technician	 Project Management Equipment Maintenance Facilitator for Safe Working Practices and Environment 	
Li, Lingyan	Lab Technician	- Equipment Maintenance - Microscopy Technician - Equipment Training	
Watkins, Katie	Office of Research Administration	 Financial Compliance Financial Oversight Equipment Fee Structure 	

CAPABILITIES

NCERCAMP draws from the expertise of more than 30 faculty members to provide corrosion and materials performance solutions to industry and government organizations. The center is home to a multimillion-dollar suite of equipment to provide research, testing and analysis in many ways.

Our capabilities are broadly outlined below.

 Accelerated Testing • Mechanical Testing • High-Temperature Testing

Materials Characterization

 Microscopy Spectroscopy • Electrochemistry

Materials Development

 Coatings • Alloys • Composites

Modeling and Simulation

Microbially Influenced Corrosion (MIC)

 Characterization of Microbiological Activities • Measurement of Chemical Indicators

Materials Performance

• Mathematical Models • Atomistic Simulations

MATERIALS PERFORMANCE TESTING

Testing is performed to understand corrosion and material degradation resistance of a variety of materials. Our wide range of testing equipment allows NCERCAMP researchers to accelerate corrosion processes while

testing a material's mechanical properties and its performance in high-temperature environments.

Accelerated Testing

- Expose coated and uncoated panels to aggressive environments to analyze corrosion resistance
- Accelerate damage and predict the material's performance
- Material degradation/corrosion processes are accelerated significantly under extreme environmental conditions
- Tests simulate effects of sunlight, dew and rain, generating weathering data in a few weeks or months
- Performance of metals, polymers and coatings for damage including color change, gloss loss, chalking, cracking, crazing, hazing, blistering, embrittlement, strength loss and oxidation

Mechanical Testing

- Evaluate electrochemical, physical and mechanical properties of coatings
- Qualification of hardness of films and coatings of materials varying from polymers to metals
- Determination of coating adhesion to substrate through nanoscratch testing
- Determination of coating failure mechanisms
- Highly localized determination of dynamic mechanical properties

A Corrosion Engineering student performs hardness testing on a micro-indenter

- New techniques for testing reliability of commercial alloys
- · Fatigue crack growth, high-cycle fatigue, low-cycle fatigue, fracture toughness, tension and compression

High-Temperature Testing

- Simulate operating stresses experienced in a pressurized water reactor system that is completely computerized
- High-temperature, high-velocity (up to Mach 2) burner rig testing with capability for sand ingestion
- Stressed oxidation testing under high-velocity, high-water-content atmosphere up to 1450°C
- Thermal-barrier-coated (TBC) superalloy system and ceramic matrix composite evaluation
- Understand influence of temperature on structure of metal
- Continuous measurement of oxidation kinetics as well as change in metal structure
- Heat treatments of materials in wide range of atmospheres and temperatures

Materials characterization labs offer analytical instrumentation for liquid, powder, surface and bulk materials analysis and characterization. These resources are available to UA faculty members and students, outside researchers and industry.

Capabilities

- Corrosion analysis
- Elemental analysis
- 3D imaging
- In-air and in-liquid imaging
- Thermal processing and analysis
- Chemical composition
- Crystal structure
- Organic, inorganic, soft/hard materials, and coatings

Spectroscopy

- Auger Electron Spectroscopy (AES)
- X-Ray Photoelectron Spectroscopy (XPS)

The word "Akron" has been etched onto a sample using Focused Ion Beam technology on NCERCAMP's SEM. At only 10 $\mu m,$ this etching is about 1/5 the thickness of a human hair.

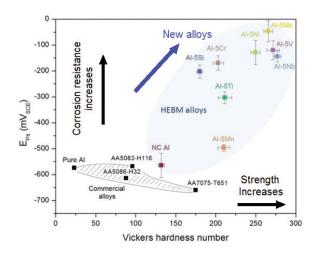
Microscopy

- Infinite Focus Microscope (IFM)
- Confocal Laser Scanning Microscopy (CLSM)
- Scanning Electron Microscopy/Energy Dispersive X-Ray (SEM/EDX)
- Atomic Force Microscopy (AFM)
- Kelvin Probe Force Microscopy (KPFM)
- Stereomicroscopy
- Fluorescence Microscopy
- Phase Contrast Microscopy
- X-Ray Diffraction (XRD)

MATERIALS DEVELOPMENT

MODELING AND SIMULATION

NCERCAMP researchers strive to prevent corrosion before it begins, rather than merely manage it. For this reason, we are always working to develop new alloys, coatings, composites and other materials that offer superior corrosion resistance as well as outstanding mechanical properties.

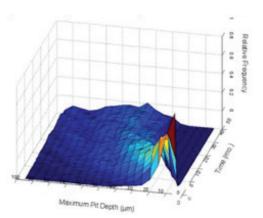

NCERCAMP utilizes a number of different modeling and simulation software programs to develop, validate and apply mathematical models to predict, prevent and manage corrosion.

Alloys and Composites

- Synthesis of advanced metallic materials with excellent corrosion resistance and mechanical properties
- Novel, ultra-strong, lightweight, corrosion-resistant materials for auto, marine and aerospace
- Processing technologies to improve the properties of commercial alloys
- Heat treatment of materials
- Metastable/nanostructured materials via high-energy ball milling
- Casting of various alloys and composites

Coatings

- Development of novel functional coatings with improved anti-corrosion properties and extended service lifetime
- Modification of polymer structure and performance • Pigments for UV resistance
- Computational simulations/models to predict coating behavior
- Development of cure-on-command UV and visible light technology
- Synthesis of organic and inorganic coatings
- Metallic and ceramic coatings development


Capabilities

- Conducting coordinated experimental/modeling investigative approaches using interdisciplinary teams of mathematicians, statisticians, scientists and engineers. The approaches combine scientific concepts and empirical input
- Constructing atomistic, mesoscale and continuum scale simulations of deterministic and/or stochastic models for new or existing designs, and for risk analysis
- Developing analytical solutions and/or numerical simulations (using in-house or commercial computational codes)
- Elucidating the interaction between the environment and the dynamic response of the system

Applications

- Atomistic simulations of surface layers, inner layer coatings, and binding of coatings to metals
- Crevice corrosion of corrosion-resistant alloys in fastener assemblies
- Galvanic corrosion in a variety of industrial metallic configurations
- Pitting corrosion
- Combined galvanic, crevice and pitting corrosion
- Microbially influenced corrosion (MIC) and biofilms
- Corrosion in coating/metal systems

Risk Management of Pitting Corrosion (AA1050) in **Atmospheric Conditions**

MICROBIALLY INFLUENCED **CORROSION (MIC)**

Researchers at UA are characterizing the influences of various microbiological processes on the corrosion of various alloys. We apply a unique combination of innovative electrochemical and microbiological techniques to determine mechanisms and early indicators of microbially influenced corrosion (MIC).

UA Research

- Apply a variety of approaches to understand the roles of microorganisms in corrosion
- Use model microorganisms, organisms isolated from systems experiencing MIC, and mixed microbial consortia from those systems
- Study microorganisms in situ, including measurements of chemical indicators of microbiological activities and culture-independent approaches to characterizing microbial communities and activities
- Utilize microscopic approaches to surface characterization, and electrochemical approaches to interrogating fluid chemistry and solid-solution interfaces (e.g., LP, EIS).

ZRA

The "ZRA" Technique

- Interrogate MIC in a split-cell format
- Zero-resistance ammetry (ZRA) measurements are collected from two working electrodes (WE) deployed in separate chambers that are connected by a semipermeable membrane
- Mimic the conditions associated with heterogeneous coverage of metal surfaces by microbial biofilms, while adapting the physicochemical conditions to those observed in field settings
- Monitor processes that occur when metals are exposed to different environmental conditions
- UA researchers are currently using this technique to:
 - 1. Determine mechanisms of MIC
 - 2. Develop robust rate formulations for MIC
 - 3. Sensitively monitor MIC in real time

Testing Agreements – Testing agreements are generally short-term engagements. Organizations will specify requirements, such as what materials they would like to have tested and what testing methods they are looking for. The center will then carry out testing and provide the results to the client. No analysis is performed.

Master Research Agreements – Research agreements are typically long-term. Companies will come to us to help find solutions to their corrosion problems. This may involve the sponsorship of a student or a postdoctoral researcher. As the research is conducted, NCERCAMP will provide an analysis of the findings and will provide ongoing recommendations.

For information on how to work with NCERCAMP on a project, please contact us at:

Address:	NCERCAMP 264 Wolf Ledges Parkway	Email:	ncercamp1@uakron.edu
	Akron, OH 44325	Website:	uakron.edu/ncercamp
Telephone:	330-972-6978		
Fax:	330-972-5141	of J	The.
The University of Akron is an Equal Education and Employment Institution - uakron.edu/eeo © 2019 by The University of Akron / E-0818-34156		$\mathbf{OI}_{\mathcal{I}}$	-Kron ²

