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Abstract:  

Renewable energy sources have come to the forefront of energy production policy 

over the last twenty years. Studies of external and direct costs of both renewable 

and nonrenewable energy sources have contributed to growing understandings of 

ways in which these energy sources can be compared in a monetary context. 

Using data from the U.S. Energy Information Administration (EIA) alongside 

international data from the International Renewable Energy Agency (IRENA) 

among other sources, we have developed forecasts for the future costs, both direct 

and social, of each energy source as well as a difference-in-difference experiment 

to determine potential effects of state-level energy policy changes on state level 

energy prices. Forecasting is generally reliable as long as no major shocks to the 

variables in question present themselves during the period being forecast. This 

paper finds that renewable energy’s social and direct costs are both forecasted to 

be lower than nonrenewable energy’s cost even while considering renewable 

energy’s higher up-front costs. Additionally, statewide energy policy appears to 

have no significant effect on renewable energy prices in the three years following 

adoption, so further research with larger datasets is recommended. 
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I. Introduction 
 

Energy markets across the globe have rapidly changed in the past twenty years in 

response to new technology, problems, and production solutions. Renewable energy’s 

technology and applications have advanced it to a position in which it can begin to compete with 

traditional nonrenewable energy sources.  Problems of pollution affecting public health, the 

environment, and other resources have come to the forefront of national politics, and these new 

renewable technologies offer a solution to the dangers of fossil fuels. Governments invest in and 

look to these renewable energy sources to better serve their populations and maintain public 

wellbeing in addition to ending reliance on the financially volatile fossil fuel economy.  

 There exists an alternative to renewable energies when emissions reductions are the goal. 

One major alternative consists of a combination of the non-renewable sources with technologies 

that reduce their negative environmental impact, such as carbon capture technology. This 

alternative approach may be more cost-effective than adopting renewable energies in the near 

future as it supplements already existing energy facilities creating a potentially cheaper solution 

when compared to constructing entirely new renewable energy industries. Studies of the energy 

market’s alternatives to renewables have focused on how to determine the cost of greenhouse gas 

emissions reduction (Gillingham and Stock,2018; Kiuila and Rutherford, 2013), potential new 

forms of carbon abatement (Lin and Ge, 2019), the economic and environmental impacts of 

renewable energy sources (Varun, Bhat, and Prakash, 2009), and even a discussion of how much 

fossil fuels would continue to be demanded in the future through a review of a worldwide 

demand analysis (Pyper, 2018). However, there have been few publicly available analysis of if 

prioritizing renewables would be an overall cheaper and more effective option for producing 

energy in the near future, particularly in the next ten years. 
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 Will it be more efficient to continue using fossil fuels with new carbon abatement 

technologies in the US alongside renewables or will fossil fuels fall out of use due to abatement 

technologies not making it as cost effective as renewables? Comparing the forecasted costs of 

each of these energy sources while including the abatement cost of carbon emissions and the 

public and environmental costs of fully utilizing renewable energy will allow policymakers to 

see if it is more efficient for renewables to be used alongside fossil fuels for many years or if a 

full switch to renewables should be done as soon as is technologically possible. Additionally, an 

analysis of the relationship of costs to determine if and how renewable energy costs and fossil 

fuel energy costs are related could prove useful in determining future actions. Finally, another 

important question is: How have energy costs changed for US states that passed policy requiring 

a certain percentage of energy production to be renewably produced? As the data is looked into 

more deeply, these questions will be adjusted to determine which can be reasonably answered 

with present day data.  

 Through the forecasting of key variables related to the costs of energy sources and an 

application of these forecasted values to equations in order to craft estimates of per-kilowatt-hour 

costs in the near future, comparisons between these two groups of energy sources are made. 

Additionally, an analysis of differences in energy prices between states that have energy 

portfolio requirements and those that do not is done to determine the short term effects of these 

policy actions. The rest of this paper is organized as follows: a review of previous studies on 

various facets of renewable energy followed by exploration of the data. From this foundation, a 

review of economic theory informs the development of a methodology for creating a cost benefit 

analysis alongside a difference-in-difference analysis. Finally, the results are organized into 

graphs and conclusions are drawn from the models and projections created. 
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II. Literature Review 
 

Previous cost benefit analyses (CBAs) have been conducted on both large and small 

scales. The International Energy Agency (IEA) conducted a large-scale cost benefit analysis 

throughout countries participating in their Renewable Energy Technology Deployment project 

(RETD) to analyze technologies, costs, and externalities as well as more specific variables 

relating to present day electrical systems. Given its comprehensive nature, this study provides a 

general structure for how to conduct a CBA and data for variables such as the estimated external 

costs of nonrenewable energy resources. For this study, costs are defined as long-run marginal 

costs and benefits are excluded for simplicity’s sake. Some research has utilized consumer 

willingness to pay to determine the benefits of renewable energy specifically, but no clear data is 

available for this and the results of studies like this particularly Roe, et. al. (2001) are restricted 

to the 1990s and early 2000s. The IEA analysis was in depth and attempted to discover which 

forms of renewable energy have positive net benefits in comparison to more traditional sources 

when externalities are not considered. The findings of this research point to hydro and wind 

power having the lowest lifetime costs of generation with coal following close behind. Biomass 

and Gas had roughly the same cost per megawatt hour, but biomass having much lower CO2 

emissions. Additionally, analyses are done by the IEA that included externalities in total cost, 

allowing an early comparison between renewable and nonrenewable sources despite limited data. 

(IEA RETD, 2007).  

Previous literature also discusses ways of determining costs and proper valuation on 

external costs associated with energy production. The literature is not conclusive on the projected 

costs and benefits of renewable energy, and no real benchmark numbers for energy costs are 

available from the studies discussed. In Mathioulakis et. al. (2013), one such CBA was 
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undertaken in Greece and applied to “solar domestic hot water systems,” or water systems heated 

by solar energy. The paper describes a utilization of net present value as one option in 

determining the costs and utilizes an average of initial costs as well as maintenance costs and an 

“expected lifetime” cost of their particular energy product (in this case, photovoltaic panels) to 

develop the overall energy cost for their CBA (Mathioulakis et. al., 2013). The findings of this 

study included the real energy savings by consumers who utilized these solar hot-water systems 

and how these types of benefits can assist in supporting a more efficient power grid. Benefits 

were developed in this model based largely around the “cost of saved electrical energy” from the 

Athens network (Mathioulakis et. al., 2013). Despite the importance of net present value for cost-

benefit analyses as detailed in Mathiolakis et. al. (2013), the wide variation in estimates for 

emissions costs creates a challenge in creating an NPV strategy for this study, so United States 

Environmental Protection Agency (EPA) estimates will instead be used. 

A major focus of renewable energy is the added benefit to consumers as can be revealed 

in retail prices. Using retail prices to reveal these benefits have been done in past studies, 

specifically hedonic housing studies. Roe et. al. (2001) conducted a survey of 1001 adults across 

eight US cities and utilized a hedonic housing model controlling for premium prices of regional 

“green energy” plans offered by electricity companies. The overall outcome of this research is a 

linear regression model where each additional percent of renewable energy utilized increases 

premiums by roughly $0.81, each percent of newly created renewable energy sources increases 

these premiums by $6.21, and a “Green-e” certification for the energy provider provides a 

$60.86 premium; this “Green-e” certification is representative of lower emissions. The authors 

interpret these coefficients alongside their survey to conclude that the people surveyed most 

likely value environmental benefits from both renewable energy and lower emissions, but lower 
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emissions are enough to convince consumers to pay premiums, even if renewable energy is not 

championed (Roe et. al., 2001).  

On the other hand, other researchers prefer to focus on more direct costs; the following 

studies focus more closely on these direct costs. One study prefers to value renewable energy via 

total life cycle benefits of each general type of plant (geothermal, wind, solar) available on 

military bases and the total lifetime costs associated with these plants (McFaul and Rojas, 2012). 

Although useful, the authors discuss the potential environmental benefits and costs associated 

with these renewable sources but do not include them in their cost-benefit analysis. Some have 

also attempted determining renewable energy cost through the abatement costs of nonrenewable 

sources. Although not considered a true “valuation,” but instead a general “evaluation” by 

Menegaki, abatement costs remain useful in developing, but not providing, effective estimates of 

the cost of renewable energy (Menegaki, 2014). These abatement costs are utilized by the EPA 

to develop the social costs utilized in our analysis. Finally, some researchers chose to value 

renewable energy via determining the costs incurred to replace nonrenewable sources. 

Replacement costs rest on the assumption that nonrenewable energy sources will be completely 

replaced by renewables at some point in the future. In determining “sustainability” and 

“economic welfare,” replacement cost theory is deemed sound by a critic of indices that utilize 

replacement costs, but the same author champions a different, more complex, valuation method. 

(Lawn, 2005). This is also in line with Menegaki’s approach, with an orientation around public 

welfare being an essential part of cost-benefit analyses. 

One of the simplest ways of estimating the production cost of electricity is to divide the 

“annualized expenses of the [energy] system” by the “annual electricity generated by the 

[energy] system” to gain a cent/kWh measure (Varun and Prakash, 2009). This may be simple 
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enough to utilize when comparing overall energy costs as renewables begin to represent a greater 

percentage of overall energy usage. A report from the National Renewable Energy Laboratory 

(NREL) also contributes in part to developing a lifetime cost of energy production facilities. 

Through a study on the lifetime greenhouse gas (GHG) emissions by fuel source, it will be 

possible to apply a cost to each fuel source utilized in a CBA to internalize this emissions 

externality (NREL, 2013). Additionally, renewable energy sources reduction of GHG’s over 

their lifetimes is an important benefit to discuss in implementing a holistic, welfare-oriented 

CBA as described by Menegaki, and data on these benefits are presented in the NREL study. In 

determining raw energy rates, another direct approach is available directly through data releases 

from the US Department of Energy. 

 Externalities are another key part of costs discussed in the literature. Benefits, or reduced 

costs as our study defines them, can be calculated through energy savings and environmental 

wellbeing via emissions reductions (Mathioulakis et. al., 2013; Varun and Prakash, 2009). One 

additional benefit that may be included is public health benefits, as emissions reductions also 

influence this. One study estimated costs of abating CO2 and willingness to pay for “reduced 

mortality risk” to develop estimated benefits of renewable energy in each US region. This more 

recent research provides useful numbers for estimating overall external costs associated with 

health externalities (Buonocore et. al., 2019).   

In addition to influencing public health and environmental factors, renewable energy 

infrastructure (notably wind turbines) has also been assumed to create aesthetic externalities. 

Hoen et. al.’s 2014 analysis Spatial Hedonic Analysis of the Effects of US Wind Energy Facilities 

on Surrounding Property Values utilized a hedonic analysis in the US and found no evidence of 

significant influence of wind energy’s visual or auditory status on nearby home prices, despite 
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previous studies with smaller sample sizes resulting in different conclusions. One such study 

found that housing prices in Illinois were potentially lowered by 12-20% due to the presence of 

visible wind turbines (Hinman, 2010). Although aesthetic externalities do not appear to influence 

housing prices on a large scale, consumer preferences may not be fully explained in this analysis 

or may be offset by some other feature of the region from which the data came. (Hoen et. al., 

2014) 

 

III. Data 
 

First, data is gathered from the US Energy Information Administration (EIA), the EIA’s 

State Energy Data System (SEDS), the International Renewable Energy Agency (IRENA), and 

the International Energy Agency (IEA). Data on electricity prices were unavailable in the time 

period of 1984-1989 so they were left blank for that period of time. A large amount of SEDS 

data also covers different variables associated with each energy source, so averages had to be 

taken when they were not available directly within the data. Renewable energy costs before 2010 

were not available, so forecasts were developed using only 2010-2019 data with zeroes excluded 

from the fit procedure. Similarly, nonrenewable cost per kWh were not available after 2016, so it 

had to be computed through available data on cost per short ton1 of coal, cost per thousand cubic 

feet of natural gas, and cost per barrel of crude oil each divided by the average kWh produced by 

each of those metrics. Renewable energy as percent of total energy was developed through 

dividing total renewable energy consumed by total primary energy consumed. 

 

                                                           
1 1 Short ton is equivalent to 2000 pounds and roughly 0.91 metric tons 
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 The variables of interest as shown in Table 1 consist of energy production and 

consumption metrics, price and cost data, and emissions data in determining the social cost of 

each energy source as well as comparing reactions to state policy. The time series for these 

variables are shown in Appendix A. First, energy production and consumption data are available 

for certain sources, with most available data on fossil fuels being measured by production and 

more renewable sources being calculated through consumption. These metrics are not equivalent, 

due to losses while transporting, storing, and converting energy for use. Thus, it is imperative to 

remember that the total energy consumed will be less than the total energy produced. However, 

they will be assumed to be close enough for the comparison in this study. Both production and 

consumption are assumed to increase over time with growing economies and growing 

populations. Emissions data is largely available through the EPA, which determines social cost 

of emissions (while including abatement costs in this estimate) for each unit of CO2 released into 

the atmosphere and these emissions are expected to have a positive relationship with energy cost 

due to environmental and health externalities. Energy cost is available through levelized cost 

Table 1: Variables 
Variable Name Time Period Source 

Total Energy Expenditures 1980-2018 EIA 
Total Energy Emissions 1980-2018 EIA 

Renewable Energy Percent of 
Total Energy 

1980-2018 Created from two EIA 
sources (Energy Production 

and renewable Energy 
Production) 

Average Renewable Cost 2010-2018 IRENA 
Average Nonrenewable Cost 1970-2018 Created from many EIA 

sources (SEDS) 
Average Retail Energy Price 1980-1983, 1989-2018 EIA 

Figure 1: Variables Utilized to determine social costs. 
Note: Total Expenditures, Emissions, and Renewable Energy Percent were removed from the analysis as ARIMA models were 

adopted, replacing VAR model. 
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research, and much of the cost of renewable energy is calculated through these research releases 

like those compiled by IRENA whereas fossil fuel cost is calculated through a combination of 

production price determined by markets within the US and external costs associated with 

reductions in CO2 emissions.  

 Each state also had data available in terms of prices and production costs from 1960 to 

2018 through the EIA SEDS, allowing a difference-in-differences analysis to be attempted to 

determine the change in energy cost as a result of renewable energy policy. Estimates of 

abatement costs to develop a comparison between non-renewables and renewables are also 

useful yet quite hard to determine. A plethora of studies have been done to determine abatement 

costs in different industries, so applying one to the entire nation is not easy. In this general case 

for comparison’s sake, an estimate of the social cost of CO2 as determined by the US 

Environmental Protection Agency (EPA) is utilized. It must be noted that this estimate is not 

perfect but considers the general social cost of each ton of CO2 rather than the cost needed to 

abate CO2, allowing each industry’s (and even each plant’s) unique abatement cost to be ignored 

in favor of a general cost summary. Abatement costs differ depending on industries and fuels, 

but the cost of CO2 developed by the EPA takes into account these costs weighted by the amount 

of energy produced by each nonrenewable energy source. Because of this method of estimation, 

it is possible that, for example, despite the whole group of nonrenewable sources potentially 

being more expensive than the whole renewable group, certain nonrenewable sources may be 

less expensive than certain renewable sources. 

 Due to the nature of time series data, traditional descriptive statistics are not useful in 

describing the data. Instead, augmented Dickey-Fuller tests assist in the determination of 

stationarity in the data as that is required for the ARIMA model to function properly. In the 
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below figure (Figure 2), any p-values above 0.05 represent a significant probability of 

stationarity in the data, so adjustments must be made in the ARIMA models to account for this. 

The only non-stationary variable in this case is the cost of renewable energy (seen below as 

“Renewable Cost”). 

Figure 2: ADF Tests.  

 
Note: Supported by clear visible trends in the graphs of the data 

 

Additionally, autocorrelation functions like those below are utilized to ensure no autocorrelation 

in the residuals of a series, which allows for more accurate forecasts. Autocorrelation is 

essentially when the value of a time series is correlated with its own lags, which Each data series 

is manipulated to ensure no autocorrelation within the residuals through differencing or 

logarithmic transformation.  



14 
 

 

Figure 3: Autocorrelation Function of Total Emission's Residuals 
Note: No lag being above or below confidence interval implies no significant autocorrelation in the series. See “Methodology” 

for explanation of autocorrelation. 

IV. Theory and Methodology 
 

         Theory 
 

The most common costs discussed in theory and literature are the direct costs for 

producing the energy. Both renewable and nonrenewable energy production requires set-up, 

transportation, storage, and direct production costs. Further costs are incurred with the 

production of energy through the traditional non-renewable methods such as coal, oil, and 

natural gas. Gasses emitted from these sources such as CO2 cause a plethora of health and 

environmental problems that increase the costs of energy production on society (Buonocore et 

al., 2019). Renewable energy technology aims to not only decrease the external costs of energy 

to society but also the monetary costs associated with each kilowatt-hour of energy produced. 

The combination of private costs and external costs create a cost to society for producing energy. 

Renewable sources, such as solar and wind energy, have fewer negative effects on the health of 
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society and wellbeing of the environment, leading to their place as a possible replacement or 

supplement to traditional fossil fuel energy production. On the other hand, non-renewable energy 

sources, that may have a lower production costs, may be able to address their higher external 

costs through technologies such as carbon abatement. The question then boils down to: Will 

traditional energy sources with carbon abatement technology or renewable energy sources be 

more socially efficient in producing energy in the future? Moreover, are renewable sources 

economically feasible to compete with non-renewable energy on the national or international 

stage without considering externalities?  

 

 

         Methodology 
 

The foundation of the methodology lies in developing forecasts that can be used to create 

useful estimated cost values. Each of the variables described in the data section will undergo 

forecasting to obtain estimated values in the future. To develop overall costs of each method of 

energy production, Autoregressive Integrated Moving Average (ARIMA) models are utilized to 

forecast each cost to a specific point in the future and a summation of these costs gives us an 

estimated total cost of that energy source per kilowatt-hour. Each specific variable has been 

either sourced from government agencies and NGOs or created using available variables from 

the former.  

 Autocorrelation Functions and Cross-correlation functions are utilized to ensure there is 

little or no autocorrelation within individual variables or across different variables. As the time 

series are annually reported, seasonal adjustment is unnecessary, but they are adjusted, if 
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necessary, to be stationarity. Differencing is also utilized to account for trends within the data 

series, which makes the model an ARIMA model. Upon completion of fitting the model to the 

data, autocorrelation functions are utilized to ensure no autocorrelation in the residuals of each 

lag, which is essential for models such as these. Autocorrelation within the data from which the 

forecast is created can lead to greater errors in our forecasts and generally make the forecast less 

reliable. The overall process begins with a forecast of each aforementioned variable ten years 

into the future using the fitted ARIMA models. As renewable energy has only come to the 

forefront of production in the last twenty to thirty years, models based on the full dataset from 

1980-2018, referred to later in the results as the “40 year data”, were supplemented with fits for 

data from 2000-2018, referred to later as the “20 year data”. Each variable will have a forecast 

generated using each length of data. The ARIMA(p,d,q) where p is the number of lags in the 

model, d is the number of differences, and q is the order of moving average, can be described 

with Equation 1: 

Equation 1. 

ŷ𝑡𝑡    =    μ +  ϕ1y𝑡𝑡−1  + ⋯+ ϕ𝑝𝑝 y𝑡𝑡−𝑝𝑝  −  θ1e𝑡𝑡−1 − ⋯−  θ𝑞𝑞e𝑡𝑡−𝑞𝑞 + 𝜖𝜖 

where Φ is the AR parameter, ϴ is the MA parameter, and the number of differences is how 

many times a previous lag of y𝑡𝑡  (also known as  y𝑡𝑡−1) is subtracted from y𝑡𝑡, where y is our 

variable of interest.2 Each parameter is a single value applied by the forecast to develop the 

model to be most accurate based on AIC values. Energy production costs are available from our 

energy sources as per kwh measures. The external cost of emissions is calculated using estimates 

from the EPA and applying it to average emissions per kWh of nonrenewable energy produced. 

                                                           
2 In this equation, 𝑒𝑒𝑡𝑡−𝑞𝑞  is simply the moving average error at lag t, which is the residual of the model to the actual 
data.  
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Summing the per kilowatt-hour production cost and the per kilowatt-hour external costs results 

in a per kilowatt-hour social cost of nonrenewable energy. On the other hand, renewable energy 

cost results in negligible emissions and so the social cost equals the per kilowatt-hour production 

cost. Variables for total energy expenditures, percentage of total energy produced by renewable 

sources, and total emissions ended up not being utilized due to a change in the methodology 

from a VAR model to multiple ARIMA models. These variables were still forecasted and are 

present in Appendix B.  

In addition to a forecast and a comparison of cost, this analysis will include state-to-state 

comparisons to attempt to determine the effect of energy policy on retail energy price in that 

state through a panel difference-in-differences analysis. This portion of the analysis will not be 

utilizing forecasted values but will instead be a separate analysis utilizing the same data sources 

between the years of 2004 and 2014. One additional data source, “State renewable portfolio 

standards and goals” from the NCSL, is necessary to determine which states have which policies. 

Marked differences in retail energy prices between two similar states who have different 

makeups of energy production will be a sign that policy has an effect on cost in one way or 

another. Energy cost differences between states can be influenced by demand for energy and fuel 

costs, but nearby states with similar resources should be roughly comparable. T-Tests will be 

utilized for the retail energy prices in these states to determine if their energy prices are  before a 

treatment (in this case, the treatment will be policy mandating increased utilization of renewable 

energy) and then an analysis of the difference between an untreated state and a treated state will 

estimate the effect of these policies on retail energy prices. Equation (2) represents the 

difference-in-differences model in this analysis. The variables of interest are the left side variable 

”EndPrice” which is made up of a three year average before and after the treatment is applied 
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for each state, the treatment variable “policy” which takes a value of “1” if the state establishes a 

renewable energy portfolio policy between 2004 and 2014 and takes a value of “0” if no policy is 

established or had been established before 2004, the time dummy variable “after” which uses a 

value of “1” to identify the states in the post treatment period and “0” in the pre-treatment period, 

and  an interaction term between “policy” and “after.” The coefficient (𝛽𝛽3) of this interaction 

term is the estimator for this diff-in-diff analysis. If this coefficient is deemed significant in the 

final analysis, then we can say there is evidence of different retail prices after the treatment takes 

place.  The variable ε represents the error term of this model.  

Equation 2.  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑖𝑖𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝐸𝐸𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸𝑃𝑃 + 𝛽𝛽2𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝐸𝐸 + 𝛽𝛽3(𝐸𝐸𝑃𝑃𝑃𝑃𝐸𝐸𝐸𝐸𝑃𝑃 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝐸𝐸) + ε𝑖𝑖𝑡𝑡 (2) 
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V. Results  

Due to changes in the energy landscape throughout the 1990s and early 2000s, only the 

“20 year” data was utilized to develop forecasts and begin to determine social costs based on 

different energy sources. Figures for each individual forecast and the individual orders of each 

ARIMA model are in Appendix B below. These results point toward lower per-kWh social and 

production costs for renewable energy sources going into the future. Figures 3 and 4 demonstrate 

these differences with mean estimates alongside highs and lows with 95% confidence intervals. 

The production cost and social cost graphs look quite similar because the estimates for the 

emissions cost of nonrenewable energy is between one and two cents per kilowatt-hour (EPA). 

External costs other than the cost of emissions were assumed to be negligible due to examples in 

the literature, but there may be some external costs unaccounted for that could influence the 

results. The results of the difference-in-differences point toward there being no significant 

difference between retail energy prices in states that had renewable energy portfolio policies and 

those that did not. 
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Figure 3: Forecasts of Social Costs and 95% Confidence Intervals 
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Figure 4: Forecasts of Direct Costs and 95% Confidence Intervals 
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VI. Conclusion 
 

 The findings of this research can be summarized the social cost of renewable energy 

being clearly lower than the social cost of nonrenewable energy. Additionally, we found no 

significant differences in retail energy prices between states with and without renewable energy 

portfolio policies. Renewable energy now appears to be a reasonable investment as the cost 

continues to fall and the real reductions in external costs as a result of an increased use of 

renewable energy sources further make the case for greater utilization of renewable energy. Even 

when including the up-front costs of renewable energy facilities through the use of levelized cost 

data, renewable energy provides lower direct per-kWh costs and vastly lower social per-kWh 

costs. The lack of significant differences in retail prices between treated states and untreated 

states in the three years following could imply the effects of these policies exist in the long term 

rather than the short term or that incentives to energy producers to employ renewable energy 

facilities would be more effective than policy requirements.  

 The models used for estimation could undoubtedly be improved. Future studies could 

better define costs and benefits of energy sources and develop a more equal footing between the 

energy sources. The lack of available production cost data for renewable energy sources and the 

reliance on levelized cost research may have influenced the results in a biased manner and may 

not represent the costs of renewable energy within the United States. 
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VIII. Appendix A  

Time Series Graphs 

 The following figures are plotted data from IRENA (for renewable cost data) and the EIA 

(all other variables) from 2000-2019. 

Figure A1 

 
Figure A2 
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Figure A3 

 
Figure A4 
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Figure A5 

 
Figure A6 
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IX. Appendix B 

Forecast Graphs 

 The following figures are plots of the forecasted values for each variable. The bright blue 

line is the mean estimated value with the area of gray representing a 95% confidence interval for 

that forecast. Additionally, B7 contains the order of the ARIMA model for each variable. 

 

 

Figure B1 
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Figure B2 

 
 

Figure B3 
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Figure B4 
 

 
Figure B5 
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Figure B6 

 
Figure B7 
 

Variable ARIMA Order 

Total Energy Expenditure (1,0,0) (0,1,0) 

Total Emissions (1,0,0) (0,1,0) 

Renewable Percent (1,0,0) (0,1,0) 

Renewable Cost (1,0,0) (0,1,0) 

Nonrenewable Cost (0,0,0) (0,1,1) 

Energy Retail Price (2,0,0) (0,1,0) 

 

X. Appendix C 

R Code 

 

#loading in datasets 
library(readxl) 
overall<-read_excel("C:/Users/joesc/Documents/SeniorYear/spring/Senior 
Projec/doc3/data/mds.xlsx", 
                    sheet="overall") 
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overall20<-read_excel("C:/Users/joesc/Documents/SeniorYear/spring/Senior 
Projec/doc3/data/mds.xlsx", 
                    sheet="overall20year") 
library(forecast) 
 
  ts.totex<-ts(data=overall$TEE, start=1980, freq=1) 
  ts.totem<-ts(data=overall$TEM, start=1980, freq=1) 
  ts.renpct<-ts(data=overall$RPT, start=1980, freq=1) 
  ts.avgrencst<-ts(data=overall$REC, start=1980, freq=1) 
  ts.avgnoncst<-ts(data=overall$NEC, start=1980, freq=1) 
  ts.avgretprc<-ts(data=overall$REP, start=1980, freq=1) 
   
  ts.totex20<-ts(data=overall20$TEE, start=2000, freq=1) 
  ts.totem20<-ts(data=overall20$TEM, start=2000, freq=1) 
  ts.renpct20<-ts(data=overall20$RPT, start=2000, freq=1) 
  ts.avgrencst20<-ts(data=overall20$REC, start=2010, end=2018, freq=1) 
  ts.avgnoncst20<-ts(data=overall20$NEC, start=2000, freq=1) 
  ts.avgretprc20<-ts(data=overall20$REP, start=2000, freq=1) 
 
#View Graphs 
   
ts.plot(ts.totex20, main="Total Expenditures 2000-2018", ylab= "Millions of 
US Dollars") 
ts.plot(ts.totem20, main="Total Emissions 2000-2018", ylab="Million Metric 
Tons of CO2") 
ts.plot(ts.renpct20, main="Percent of Energy Produced by Renewable Sources in 
the US 2000-2018", ylab="Percent") 
ts.plot(ts.avgrencst20, main="Average Renewable Cost 2010-2019", 
ylab="Dollars/KWH") 
ts.plot(ts.avgnoncst20, main="Average Nonrenewable Cost 2000-2018", 
ylab="Dollars/KWH") 
ts.plot(ts.avgretprc20, main="Average US Energy Retail Price 2000-2018", 
ylab="Dollars/KWH") 
 
  #making stationary 
      stl.totem<-(diff(log(ts.totem))) 
      stl.renpct<-(diff(log(ts.renpct))) 
      stl.avgrencst<-(diff(log(ts.avgrencst))) 
      stl.avgnoncst<-(diff(log(ts.avgnoncst))) 
      stl.avgretprc<-(diff(log(ts.avgretprc))) 
       
      acf(stl.totem, main="Autocorrelation Function Graph for Total 
Emissions") 
      acf(stl.renpct) 
      acf(stl.avgrencst) 
      acf(stl.avgnoncst) 
      acf(stl.avgretprc) 
       
      ccf(stl.totem, stl.renpct) 
      ccf(stl.totem, stl.avgrencst) 
      ccf(stl.totem, stl.avgnoncst) 
      ccf(stl.totem, stl.avgretprc) 
      ccf(stl.renpct, stl.avgrencst) 
      ccf(stl.renpct, stl.avgnoncst) 
      ccf(stl.renpct, stl.avgretprc) 
      ccf(stl.avgrencst, stl.avgnoncst) 
      ccf(stl.avgrencst, stl.avgretprc) 
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      ccf(stl.avgnoncst, stl.avgretprc) 
       
      stl.totem20<-(diff(ts.totem20)) 
      acf(stl.totem20) 
#correlations 
library(ggpubr) 
library(Hmisc) 
library(corrplot) 
  coroverall<-cor(overall) 
    corrplot(coroverall) 
 
#time series visual analysis 
 
 
ts.plot(cbind(ts.totex, ts.renpct)) 
 
layout(1:2) 
ts.plot(ts.avgrencst) 
ts.plot(ts.renpct) 
 
layout(1:2) 
    ts.plot(ts.totem, main="Total Emissions 1980-2018", ylab="Total Emissions 
(Million Metric Tons CO2)") 
      abline(v=c(2008), col=c("blue")) 
    ts.plot(ts.renpct, main="Renewable Percent of Total Energy 1980-2018", 
ylab="Renewable Percent of Total Energy (%)") 
      abline(v=c(2008), col=c("blue")) 
 
       
#Time Series Dickey Fullers 
library(tseries) 
       
    adf.test(ts.totex20) 
    adf.test(ts.totem20) 
    adf.test(ts.renpct20) 
    adf.test(ts.avgrencst20) 
    adf.test(ts.avgnoncst20) 
    adf.test(ts.avgretprc20) 
     
     
     
#ARMA models 
       
       
         
      #ARMA 20 Year Data 
        fit.totex20<-auto.arima(ts.totex20, stepwise=FALSE, d=FALSE) 
             fc.totex20<-forecast(fit.totex20, h=10, level= c(95)) 
             plot(fc.totex20, main="Forecast of Total Energy Expenditure", 
ylab="US Dollars") 
         
        fit.totem20<-auto.arima(ts.totem20, stepwise=FALSE, d=FALSE) 
             fc.totem20<-forecast(fit.totem20, h=10, level= c(95)) 
             plot(fc.totem20, main="Forecast of Total Emissions", 
ylab="Metric Tons of CO2") 
         
        fit.renpct20<-auto.arima(ts.renpct20, stepwise=FALSE, d=FALSE) 
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             fc.renpct20<-forecast(fit.renpct20, h=10, level= c(95)) 
             plot(fc.renpct20, main="Forecast of Renewable Percent", 
ylab="Percent of Energy from Renewable Sources") 
         
        fit.ren20<-auto.arima(ts.avgrencst20, stepwise=FALSE) 
             fc.ren20<-forecast(fit.ren20, h=10, level= c(95)) 
             plot(fc.ren20, main="Forecast of Renewable Energy Cost", 
ylab="USD per kWh") 
         
        fit.non20<-auto.arima(ts.avgnoncst20, stepwise=FALSE, d=FALSE) 
             fc.non20<-forecast(fit.non20, h=10, level= c(95)) 
             plot(fc.non20, main="Forecast of Nonrenewable Energy Cost", 
ylab="USD per kWh") 
         
        fit.ret20<-auto.arima(ts.avgretprc20, stepwise=FALSE, d=FALSE) 
             fc.ret20<-forecast(fit.ret20, h=10, level= c(95)) 
             plot(fc.ret20, main="Forecast of Energy Retail Price", ylab="USD 
per kWh") 
         
              
#exporting forecasts 
       
      write.csv(rbind(fc.non20$mean, fc.ren20$mean, fc.renpct20$mean, 
                      fc.ret20$mean, fc.totem20$mean, fc.totex20$mean), 
file="C:/Users/joesc/Documents/SeniorYear/spring/Senior 
Projec/forecasts.csv") 
      write.csv(rbind(fc.non20$upper, fc.ren20$upper, fc.renpct20$upper, 
                      fc.ret20$upper, fc.totem20$upper, fc.totex20$upper), 
file="C:/Users/joesc/Documents/SeniorYear/spring/Senior 
Projec/forecastsupper.csv") 
      write.csv(rbind(fc.non20$lower, fc.ren20$lower, fc.renpct20$lower, 
                      fc.ret20$lower, fc.totem20$lower, fc.totex20$lower), 
file="C:/Users/joesc/Documents/SeniorYear/spring/Senior 
Projec/forecastslower.csv")        
#Difference in Difference 
              
             did<-
read_excel("C:/Users/joesc/Documents/SeniorYear/spring/Senior 
Projec/DataForRevisedDiffInDiff.xlsx", 
                                 sheet="treatmenttest") 
          
  didreg <- lm(EndPrice ~ policy + after + int, data=did) 
  summary(didreg) 
  #No significant difference between states after treat 
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